Deep Learning-based Korean Dialect Machine Translation Research Considering Linguistics Features and Service
Published in Journal of the Korea Convergence Society, 2022
Abstract
Based on the importance of dialect research, preservation, and communication, this paper conducted a study on machine translation of Korean dialects for dialect users who may be marginalized. For the dialect data used, AIHUB dialect data distributed based on the highest administrative district was used. We propose a many-to-one dialect machine translation that promotes the efficiency of model distribution and modeling research to improve the performance of the dialect machine translation by applying Copy mechanism. This paper evaluates the performance of the one-to-one model and the many-to-one model as a BLEU score, and analyzes the performance of the many-to-one model in the Korean dialect from a linguistic perspective. The performance improvement of the one-to-one machine translation by applying the methodology proposed in this paper and the significant high performance of the many-to-one machine translation were derived.